Abstract

BackgroundVertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae). The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja.ResultsAlthough the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections.ConclusionThe present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

Highlights

  • Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb

  • The posterolateral cortical amygdaloid nucleus projects to other amygdaloid nuclei; whereas other seemingly minor outputs are directed to the ventral striatum, in particular to the core of the nucleus accumbens and olfactory tubercle [6,7,8,9,10,11]

  • In the present work, the projections from the olfactory amygdala, and those from the posterolateral cortical amygdaloid nucleus, to the ventral striatum have been analyzed in rats

Read more

Summary

Introduction

Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Axons of the projection (mitral) cells of the main olfactory bulb are directed to the olfactory cortex and olfactory amygdala, the anterior and posterolateral cortical amygdaloid nuclei [3,4,5]. The posterolateral cortical amygdaloid nucleus projects to other amygdaloid nuclei; whereas other seemingly minor outputs are directed to the ventral striatum, in particular to the core of the nucleus accumbens and olfactory tubercle [6,7,8,9,10,11]. The present data are interesting in the context of the current view of the functional and anatomical reward circuits in the ventral striatum [17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.