Abstract

The axonal projections of neurons in and near the nucleus of the solitary tract have been visualized using titrated amino acid autoradiography. Axons of neurons of this nucleus ramify extensively within the nucleus itself, but much less so in the nucleus commissuralis. They also enter cranial motor nuclei within the medulla. Axons originating in the anterior part of the nucleus of the solitary tract extend to the hypoglossal, facial and probably trigeminal motor nuclei, but not to the dorsal motor nucleus of the vagus or the nucleus ambiguus. The posterior part of the nucleus of the solitary tract projects to all these motor nuclei. In the spinal cord solitary nucleus axons remain in the medial gray directly caudal to the solitary nucleus itself. The distribution becomes very weak by C 3 after some fibers spread laterally into the caudal trigeminal nucleus. Fibers are labeled in the contralateral ventral columns, but they could not be unequivocably attributed to solitary neurons. Axons ascending from the nucleus of the solitary tract extend no further rostrally than the pons, where they terminate in the caudal end of the parabrachial nuclei. Although often treated as entirely separate systems, the present results indicate that secondary gustatory neurons in the anterior solitary nucleus and secondary visceral afferent neurons in the posterior solitary nucleus have very similar rostral and caudal projections. The pontine parabrachial nuclei, the rostral termination of solitary nucleus neurons, have extensive direct connections to the thalamus, the hypothalamus and the limbic forebrain. Assuming similar connections occur in other mammals, these findings establish the existence of di-synaptic visceral afferent access to the highest autonomic integrative centers in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call