Abstract

A projection---difference method is developed for approximating controlled Fourier filtering for quasilinear parabolic functional-differential equations. The method relies on a projection---difference scheme (PDS) for the approximation of the differential problem and derives a O(?1/2?+?h) bound on the rate of convergence of PDS in the weighted energy norm without prior assumptions of additional smoothness of the generalized solutions. The PDS leads to a natural approximation of the objective functional in the optimal Fourier filtering problem. A bound of the same order is obtained for the rate of convergence in the functional of the problems approximating the Fourier filter control problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.