Abstract

Robust counterpart reformulation is a common technique used to deal with data uncertainty in robust optimization (RO) problems. The derivation of the robust counterpart formulation using the duality theory is nontrivial, especially for complex uncertainty sets. To reduce the dependence on robust counterparts, a novel method is proposed in this article for RO problems. Based on the feasible space projection, the proposed method can locate robust solutions without formulating the robust counterparts. RO model can be reformulated as a semi-algebraic system and a modified cylindrical algebraic decomposition method is applied to project the high-dimensional feasible space on the low-dimensional space of the objective function and uncertainty parameters. By solving the maximization problem and using the max-max decision criterion, the final robust solution can be selected. The case studies, involving problems of nonlinear programming (NLP) and robust design optimization problems, show that the proposed method can obtain the robust solution effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.