Abstract

The design of thermal protection systems (TPS), including heat shields for reentry vehicles, rely more and more on computational simulation tools for design optimization and uncertainty quantification. Since high-fidelity simulations are computationally expensive for full vehicle geometries, analysts primarily use reduced-physics models instead. Recent work has shown that projection-based reduced-order models (ROMs) can provide accurate approximations of high-fidelity models at a lower computational cost. ROMs are preferable to alternative approximation approaches for high-consequence applications due to the presence of rigorous error bounds. The following paper extends our previous work on projection-based ROMs for ablative TPS by considering hyperreduction methods which yield further reductions in computational cost and demonstrating the approach for simulations of a three-dimensional flight vehicle. We compare the accuracy and potential performance of several different hyperreduction methods and mesh sampling strategies. This paper shows that with the correct implementation, hyperreduction can make ROMs up to 1-3 orders of magnitude faster than the full order model by evaluating the residual at only a small fraction of the mesh nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call