Abstract
We developed a compact sized device for angular and energy analysis of charged particles in a wide acceptance cone angle of nearly 1π steradian. This device is configured from an electrostatic lens comprising an axisymmetric aspherical mesh, which has a concave shape viewed from the point source, a set of axisymmetric electrodes, planar grids, microchannel plates, and a fluorescent screen positioned coaxially. The potentials of electrodes are adjusted so that the trajectories of the electrons with arbitrarily set kinetic energy are substantially parallelized by the electrostatic lens and enter the planar grid perpendicularly. Instead of the planar grid, a collimator plate with parallel holes can be used as an energy band-pass filter. The angular distribution of electrons with the selected kinetic energy is projected directly onto the fluorescent screen without converging and passing through a pinhole. This is a simple but significant electron-optical design to obtain wide-range angular distribution with high angular resolution, and the analyzer can be suitably used for the two-dimensional angular distribution measurements of electrons and ions emitted from surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.