Abstract

Hydrogel-based electronics have inherent similarities to biological tissues and hold potential for wearable applications. However, low conductivity, poor stretchability, nonpersonalizability, and uncontrollable dehydration during use limit their further development. In this study, projection stereolithography 3D printing high-conductive hydrogel for flexible passive wireless sensing is reported. The prepared photocurable silver-based hydrogel is rapidly planarized into antenna shapes on substrates using surface projection stereolithography. After partial dehydration, silver flakes within the circuits form sufficient conductive pathways to achieve high conductivity (387 S cm-1). By sealing the circuits to prevent further dehydration, the resistance remains stable when tensile strain is less than 100% for at least 30 days. Besides, the sealing materials provide versatile functionalities, such as stretchability and shape memory property. Customized flexible radio frequency identification tags are fabricated by integrating with commercial chips to complete the accurate recognition of eye movement, realizing passive wireless sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.