Abstract

The geometrical properties of detection systems used for computerized tomography are often approximated by line integrals, despite the fact that the systems have nonnegligible beam widths as the result of a finite detector size and a finite acceptance angle. Ways to take into account these distance-dependent beam widths in algorithms for two-dimensional straight-line emission tomography are discussed. It is shown that the full three-dimensional imaging properties of the detection system, including filter functions, can be described in projection space. The relationships with the geometric matrix and the étendue (integral of solid angle over area) are discussed. Two methods to compensate for most of the beam-width effects have been developed, which can be combined with many tomography algorithms. The two methods are demonstrated to improve the quality of tomographic reconstructions of measurements by the bolometer tomography system on the Joint European Torus (JET) tokamak. The strengths and limitations of the methods are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.