Abstract

Abstract Projection pursuit describes a procedure for searching high-dimensional data for “interesting” low-dimensional projections via the optimization of a criterion function called the projection pursuit index. By empirically examining the optimization process for several projection pursuit indexes, we observed differences in the types of structure that maximized each index. We were especially curious about differences between two indexes based on expansions in terms of orthogonal polynomials, the Legendre index, and the Hermite index. Being fast to compute, these indexes are ideally suited for dynamic graphics implementations. Both Legendre and Hermite indexes are weighted L 2 distances between the density of the projected data and a standard normal density. A general form for this type of index is introduced that encompasses both indexes. The form clarifies the effects of the weight function on the index's sensitivity to differences from normality, highlighting some conceptual problems with the Legen...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.