Abstract

We develop a projection operator formalism for studying both the zero temperature equilibrium phase diagram and the non-equilibrium dynamics of the Bose-Hubbard model. Our work, which constitutes an extension of Phys. Rev. Lett. {\bf 106}, 095702 (2011), shows that the method provides an accurate description of the equilibrium zero temperature phase diagram of the Bose-Hubbard model for several lattices in two- and three-dimensions (2D and 3D). We show that the accuracy of this method increases with the coordination number $z_0$ of the lattice and reaches to within 0.5% of quantum Monte Carlo data for lattices with $z_0=6$. We compute the excitation spectra of the bosons using this method in the Mott and the superfluid phases and compare our results with mean-field theory. We also show that the same method may be used to analyze the non-equilibrium dynamics of the model both in the Mott phase and near the superfluid-insulator quantum critical point where the hopping amplitude $J$ and the on-site interaction $U$ satisfy $z_0J/U \ll 1$. In particular, we study the non-equilibrium dynamics of the model both subsequent to a sudden quench of the hopping amplitude $J$ and during a ramp from $J_i$ to $J_f$ characterized by a ramp time $\tau$ and exponent $\alpha$: $J(t)=J_i +(J_f-J_i) (t/\tau)^{\alpha}$. We compute the wavefunction overlap $F$, the residual energy $Q$, the superfluid order parameter $\Delta(t)$, the equal-time order parameter correlation function $C(t)$, and the defect formation probability $P$ for the above-mentioned protocols and provide a comparison of our results to their mean-field counterparts. We find that $Q$, $F$, and $P$ do not exhibit the expected universal scaling. We explain this absence of universality and show that our results for linear ramps compare well with the recent experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.