Abstract

By using Moreau's decomposition theorem for projecting onto cones, the problem of projecting onto a simplicial cone is reduced to finding the unique solution of a nonsmooth system of equations. It is shown that Picard's method applied to the system of equations associated with the problem of projecting onto a simplicial cone generates a sequence that converges linearly to the solution of the system. Numerical experiments are presented making the comparison between Picard's and semi-smooth Newton's methods to solve the nonsmooth system associated with the problem of projecting a point onto a simplicial cone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.