Abstract

The study of the radiation tolerance and subsequent annealing effects on p+-n-n+ silicon micro strip detectors has been performed as a part of R&D program for the preshower detector in the CMS experiment. CMS silicon strip sensors were irradiated with 24 GeV protons at CERN Proton Synchrotron (PS) to a total fluence of 3x10 14 p/cm 2 . Sensors were stored in freezer after irradiation and I-V and C-V measurements were carried out. Variation in full depletion voltage and leakage current have been studied as a function of annealing time. The breakdown performance of the device actually improves after irradiation due to the beneficial effect of type-inversion. The breakdown voltage increases further with annealing time. However, the leakage current increases tremendously just after irradiation. As the sensors are annealed, there is a drop in leakage current. The rate of annealing is observed to be temperature dependent. Hence in terms of leakage current, it seems that room temperature annealing is beneficial. However, if the sensors are annealed at room temperature, the depletion voltage will start rising after a short period of beneficial annealing. Hence for the silicon detectors to be used for Preshower of CMS experiment, the temperature is set to freezer temperature to avoid reverse annealing. The beneficial and reverse annealing time constants are calculated and found to match well with predictions from Ziock parameterization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.