Abstract
Spectator resonant KL(23)L(23) Auger electron spectra have been measured in the Si 1s photoexcitation region of Si(CH(3))(4) using monochromatized undulator radiation combined with a hemispherical electron spectrometer. The broad peak with high intensity in a total ion yield spectrum, coming mainly from excitation of a 1s electron into the 6t(2) vacant orbital, induces a spectator Auger decay in which the excited electron remains in its excited orbital. The component on the higher energy side of this peak through 1s excitation into a Rydberg orbital produces resonant Auger decays in which the excited Rydberg electron moves into a slightly higher Rydberg orbital, or is partly shaken up to a significantly higher Rydberg orbital. These findings of Si(CH(3))(4) indicate a clear contrast to those for SiF(4), in which the 1s excitation into a Rydberg orbital induces a shake-down phenomenon as well as a shake-up one. The results of these molecules exhibit a clear splitting effect among excited orbitals which are smeared out by overlapping due to lifetime widths and due to densely populated levels in the 1s electron excitation spectrum. This is consistent with the calculation on photoexcitation within the framework of density functional theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.