Abstract

We propose a projection approach to perform quantum Monte Carlo (QMC) simulation on the infinite-$U$ Hubbard model at some integer fillings where either it is sign problem free or surprisingly has an algebraic sign structure -- a power law dependence of average sign on system size. We demonstrate our scheme on the infinite-$U$ $SU(2N)$ fermionic Hubbard model on both a square and honeycomb lattice at half-filling, where it is sign problem free, and suggest possible correlated ground states. The method can be generalized to study certain extended Hubbard models applying to cluster Mott insulators or two-dimensional Moir\'e systems; among one of them at certain non-half-integer filling, the sign has an algebraic behavior such that it can be numerically solved within a polynomial time. Further, our projection scheme can also be generalized to implement the Gutzwiller projection to spin basis such that $SU(2N)$ quantum spin models and Kondo lattice models may be studied in the framework of fermionic QMC simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.