Abstract
The design of near future cryptocircuits will require greater performance characteristics in order to be implemented in devices with very limited resources for secure applications. Considering the security against differential power side-channel attacks (DPA), explorations of different implementations of dual-precharge logic gates with advanced and emerging technologies, using nanometric FinFET and Tunnel FET transistors, are proposed aiming to maintain or even improve the security levels obtained by current Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) technologies and reducing the resources needed for the implementations. As case study, dual-precharge logic primitives have been designed and included in the 4-bit substitution box of PRIDE algorithm, measuring the performance and evaluating the security through simulation-based Differential Power Analysis (DPA) attacks for each implementation. Extensive electrical simulations with predictive Predictive Transistor model on scaled 16nm and 22nm MOSFET, 16nm and 20nm FinFET, and 20nm Tunnel Field Effect Transistor (TFET) demonstrate a clear evolution of security and performances with respect to current 90nm MOSFET implementations, providing FinFET as fastest solutions with a delay 3.7 times better than conventional proposals, but TFET being the best candidate for future cryptocircuits in terms of average power consumption (x0.02 times compared with conventional technologies) and security in some orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Journal on Emerging Technologies in Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.