Abstract

Abstract We consider the discretization of least-squares problems for linear ill-posed operator equations in Hilbert spaces. The main subject of this article concerns conditions for convergence of the associated discretized minimum-norm least-squares solution to the exact solution using exact attainable data. The two cases of global convergence (convergence for all exact solutions) or local convergence (convergence for a specific exact solution) are investigated. We review the existing results and prove new equivalent conditions when the discretized solution always converges to the exact solution. An important tool is to recognize the discrete solution operator as an oblique projection. Hence, global convergence can be characterized by certain subspaces having uniformly bounded angles. We furthermore derive practically useful conditions when this holds and put them into the context of known results. For local convergence, we generalize results on the characterization of weak or strong convergence and state some new sufficient conditions. We furthermore provide an example of a bounded sequence of discretized solutions which does not converge at all, not even weakly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call