Abstract

Laser speckle contrast images (LSCIs) have been utilized to monitor blood flow perfusion. However, they have conventionally been observed on monitor screens, resulting in potential spatial mismatching between the imaging region of interest (IROI) and monitor screen. This study proposes a projection mapping (PM) system for LSCIs (PMS_LSCI) that projects LSCIs to directly observe the blood flow perfusion in the IROI. The PMS_LSCI consists of a camera, imaging optics, a laser projector, and graphic user interface software. The spatial matching in the regions of interest was performed by adjusting the software screen of the LSCI in the IROI and evaluated by conducting in-vitro and in-vivo studies. An additional in-vivo study was performed to investigate the feasibility of real-time PM of the LSCI. The spatial mismatching in the regions of interest was ranged from 2.74% to 6.47% depending on the surface curvature. The PMS_LSCI could enable real-time PM of LSCI at four different blood flow states depending on blood pressure. The PMS_LSCI projects the LSCI in the IROI by interacting with a projector instead of the monitor screen. The PMS_LSCI presented clinical feasibility in the in-vitro and in-vivo studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call