Abstract

Metal artifact remains a challenge in cone-beam CT images. Many two-pass metal artifact reduction methods have been proposed, which work fairly well, but are limited when the metal is outside the scan field-of-view (FOV) or when the metal is moving during the scan. In the former, even reconstructing with a larger FOV does not guarantee a good estimate of metal location in the projections; and in the latter, the metal location in each projection is difficult to identify due to motion. Furthermore, two-pass methods increase the total reconstruction time. In this study, a projection-based metal detection and correction method with a dual layer detector is investigated. The dual layer detector provides dual energy images with perfect temporal and spatial registration in each projection, which aid in the identification of metal. A simple phantom with metal wires (copper) and a needle (steel) is used to evaluate the projection-based metal artifact reduction method from a dual layer scan and compared with that of a single layer scan. Preliminary results showed enhanced ability to identify metal regions, leading to substantially reduced metal artifact in reconstructed images. In summary, an effective single-pass, projection-domain method using a dual layer detector has been demonstrated, and it is expected to be robust against truncation and motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call