Abstract

Length scale control in topology optimization is an important area of research with direct implications on numerical stability and solution manufacturability. Projection-based algorithms for continuum topology optimization have received considerable attention in recent years due to their ability to control minimum length scale in a flexible and computationally efficient manner. In this paper, we propose a new projection-based algorithm that embeds minimum length scale control on two material phases (e.g., solid and void) as well as optional maximum length scale on one material phase (e.g., solid or void) into the projection methodology used for material distribution approaches to topology optimization. The proposed algorithms are demonstrated on benchmark problems and are shown to satisfy the length scale constraints imposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.