Abstract

This paper describes a method for scheduling the events of a switched system to achieve an optimal performance. The approach has guarantees on convergence and computational complexity that parallel derivative-based iterative optimization but in the infinite dimensional, integer constrained setting of mode scheduling. In comparison to methods relying on mixed integer programming, the presented approach does not require a priori discretizations of time or state. Furthermore, in comparison to embedding and relaxation methods, every iteration of the algorithm returns a dynamically feasible solution. A large class of problems call for optimal mode scheduling. This paper considers a vehicle tracking problem and a high dimensional multimachine power network synchronization problem. For the power network example, both single horizon and receding horizon approaches prevent instability of the network, and the receding horizon approach does so at near real-time speeds on a single processor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.