Abstract

Simple SummaryGlossina morsitans is a species of tsetse flies and a vector for Human African Trypanosomiasis, which is a severe parasitic infectious illness that can lead to death unless treated. At present, the G. morsitans are mainly found in sub-Saharan Africa. But modifications of its distribution undergoing as a result of climate change is still unknown. In order to provide scientific basis for effective monitoring and G. morsitans control, this study aimed to collect the distribution and to explore the potentially suitable habitat for G. morsitans under various scenarios. We downloaded the major data of G. morsitans occurrence from the Global Biodiversity Information Facility. Maxent software and R language were employed to analyze the relationship between occurrence records and climatic variables and project the potentially suitable habitat for G. morsitans in historical and future periods. The results showed that Isothermality contributed most to the distribution of G. morsitans. The predicted potentially suitable areas for G. morsitans under historical climate conditions include a large area of Africa near and below the equator, small equatorial regions of southern Asia, America, and Oceania. Under the future climate conditions, the potentially suitable areas would decline about −5.38 ± 1.00% as a whole under all SSPs compared with 1970–2000.Glossina morsitans is a vector for Human African Trypanosomiasis (HAT), which is mainly distributed in sub-Saharan Africa at present. Our objective was to project the historical and future potentially suitable areas globally and explore the influence of climatic factors. The maximum entropy model (MaxEnt) was utilized to evaluate the contribution rates of bio-climatic factors and to project suitable habitats for G. morsitans. We found that Isothermality and Precipitation of Wettest Quarter contributed most to the distribution of G. morsitans. The predicted potentially suitable areas for G. morsitans under historical climate conditions would be 14.5 million km2, including a large area of Africa which is near and below the equator, small equatorial regions of southern Asia, America, and Oceania. Under future climate conditions, the potentially suitable areas are expected to decline by about −5.38 ± 1.00% overall, under all shared socioeconomic pathways, compared with 1970–2000. The potentially suitable habitats of G. morsitans may not be limited to Africa. Necessary surveillance and preventive measures should be taken in high-risk regions.

Highlights

  • Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

  • Pearson’s correlation test (Figure 2) indicated that the main factors affecting the suitability of G. morsitans were Isothermality, Precipitation of Wettest Quarter, Precipitation

  • Pearson’s correlation test (Figure 2) indicated that the main factors affecting the suitability of G. morsitans were Isothermality, Precipitation of Wettest Quarter, Precipitation of Driest Month, Temperature Seasonality, Average Temperature of Coldest Quarter, Maximum Temperature of February, Average Precipitation of November, Average Precipitation of March, and Annual precipitation, with contributions of 26.4%, 22.4%, 6.8%, 4.9%, 4.6%, 4.3%, 3.2%, 2.7%, and 2.4%, respectively (Table 2)

Read more

Summary

Introduction

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia; School of Public Health, Nanjing Medical University, Nanjing 210000, China. Modifications of its distribution undergoing as a result of climate change is still unknown. In order to provide scientific basis for effective monitoring and G. morsitans control, this study aimed to collect the distribution and to explore the potentially suitable habitat for G. morsitans under various scenarios. Maxent software and R language were employed to analyze the relationship between occurrence records and climatic variables and project the potentially suitable habitat for G. morsitans in historical and future periods. The results showed that Isothermality contributed most to the distribution of G. morsitans

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.