Abstract

This paper proposes a geometric iteration algorithm for computing point projection and inversion on planar parametric curves based on local biarc approximation. The iteration begins with initial estimation of the projection of the prescribed test point. For each iteration, we construct a biarc that locally approximates a segment on the original curve starting from the current projective point. Then we compute the projective point for the next iteration, as well as the parameter corresponding to it, by projecting the test point onto this biarc. The iterative process terminates when the projective point satisfies the required precision. Examples demonstrate that our algorithm converges faster and is less dependent on the choice of the initial value compared to the traditional geometric iteration algorithms based on single-point approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.