Abstract
Mucormycosis, a life-threatening fungal infection that primarily affects immunocompromised individuals.The protein family commonly observed in the fugus responsible for causing Mucormycosis. The attachment of spores to host cells surface, facilitated by a protein CotH, is a critical step for the invasion and progression of the disease. Therefore, CotH inhibitors have emerged as a promising therapeutic strategy for treating mucormycosis.This study presents a novel therapeutic target and ligand for controlling the growth of Mucorales. First, to identify potential CotH inhibitors, we surveyed a library antifungal compounds elaborated in AYUSearch database. Next, using machine learning-based algorithms we screend 20 potentials ligands, followed by structure-based molecular modelling and molecular trajectory analysis to identify the three most promising chemical constituents. In-vitro tube assays on selected Mucorales determined the minimum inhibitory concentrations (MIC) for screened chemotypes. The MIC assay revealed that Bacoside inhibits the growth and sporulation at 5 mg/ml concentrations, emerging as a probable CotH inhibitor. Further, the compound's toxicity was evaluated by adding it to the feed of C.elegans, and the finding suggests that the bacoside is reasonably safe at the studied concentration. The findings project bacoside A as a potential anti-mucorale lead compound that can be further validated with preclinical and clinical studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.