Abstract

Projectile fragmentation at Fermi energies is an important method to produce radioactive beams for the study of isospin asymmetric nuclear matter. Fragmentation is usually parametrized successfully by empirical phase space models. In this contribution we apply a microscopical method, semiclassical transport theory, to study in detail the reaction mechanism of the fragmentation process. We apply it to experimental data of 18O on 181Ta at E/A = 35 MeV measured in Dubna. We calculate consistently the excitation energy of the primary fragments and take into account their decay by a statistical model. It is found that the dissipative part of the fragment spectra is well described by transport theory. However, there are in addition important direct and collective contributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call