Abstract

We propose a projected Wasserstein gradient descent method (pWGD) for high-dimensional Bayesian inference problems. The underlying density function of a particle system of Wasserstein gradient descent (WGD) is approximated by kernel density estimation (KDE), which faces the long-standing curse of dimensionality. We overcome this challenge by exploiting the intrinsic low-rank structure in the difference between the posterior and prior distributions. The parameters are projected into a low-dimensional subspace to alleviate the approximation error of KDE in high dimensions. We formulate a projected Wasserstein gradient flow and analyze its convergence property under mild assumptions. Several numerical experiments illustrate the accuracy, convergence, and complexity scalability of pWGD with respect to parameter dimension, sample size, and processor cores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.