Abstract
Changes in the size structure of coral populations have major consequences for population dynamics and community function, yet many coral reef monitoring projects do not record this critical feature. Consequently, our understanding of current and future trajectories in coral size structure, and the demographic processes underlying these changes, is still emerging. Here, we provide a conceptual summary of the benefits to be gained from more comprehensive attention to the size of coral colonies in reef monitoring projects, and we support our argument through the use of case-history examples and a simplified ecological model. We neither seek to review the available empirical data, or to rigorously explore causes and implications of changes in coral size, we seek to reveal the advantages to modifying ongoing programs to embrace the information inherent in changing coral colony size. Within this framework, we evaluate and forecast the mechanics and implications of changes in the population structure of corals that are transitioning from high to low abundance, and from large to small colonies, sometimes without striking effects on planar coral cover. Using two coral reef locations that have been sampled for coral size, we use demographic data to underscore the limitations of coral cover in understanding the causes and consequences of long-term declining coral size, and abundance. A stage-structured matrix model is used to evaluate the demographic causes of declining coral colony size and abundance, particularly with respect to the risks of extinction. The model revealed differential effects of mortality, growth and fecundity on coral size distributions. It also suggested that colony rarity and declining colony size in association with partial tissue mortality and chronic declines in fecundity, can lead to a demographic bottleneck with the potential to prolong the existence of coral populations when they are characterized by mostly very small colonies. Such bottlenecks could have ecological importance if they can delay extinction and provide time for human intervention to alleviate the environmental degradation driving reductions in coral abundance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.