Abstract

Four bias correction methods, i.e., gamma cumulative distribution function (GamCDF), quantile–quantile adjustment (QQadj), equidistant cumulative probability distribution function (CDF) matching (EDCDF), and transform CDF (CDF-t), to read are applied to five daily precipitation datasets over China produced by LMDZ4-regional that was nested into five global climate models (GCMs), BCC-CSM1-1m, CNRM-CM5, FGOALS-g2, IPSL-CM5A-MR, and MPI-ESM-MR, respectively. A unified mathematical framework can be used to define the four bias correction methods, which helps understanding their natures and essences for identifying the most reliable probability distributions of projected climate. CDF-t is shown to be the best bias correction method based on a comprehensive evaluation of different precipitation indices. Future precipitation projections corresponding to the global warming levels of 1.5 °C and 2 °C under RCP8.5 were obtained using the bias correction methods. The multi-method and multi-model ensemble characteristics allow to explore the spreading of projections, considered a surrogate of climate projection uncertainty, and to attribute such uncertainties to different sources. It was found that the spread among bias correction methods is smaller than that among dynamical downscaling simulations. The four bias correction methods, with CDF-t at the top, all reduce the spread among the downscaled results. Future projection using CDF-t is thus considered having higher credibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.