Abstract

The population of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) in the Blue River, Indiana has undergone a dramatic decline over the last decade. Recruitment in these declining populations has been negligible, and populations are now composed almost entirely of older age classes (upwards of 20 years old). Given this dramatic decline, it is imperative to assess the impacts of these demographic patterns on population growth and long-term stability. Therefore, we developed a stage-structured, life-history model to examine the effects of varying levels of egg, juvenile, and adult survivorship on abundance, recruitment, and long-term population projections. We performed a sensitivity analysis of the model and determine which life-history parameters have the greatest potential to increase/stabilise hellbender population growth. Finally, we conducted a population viability analysis to determine the probability of extinction associated with varying management strategies. For eastern hellbender populations in Indiana, adults (especially females) are the most important component of long-term population viability. Sensitivity and elasticity analyses of the Lefkovitch matrix revealed that survival of adult and egg/larvae life-history stages are the most important for focused management efforts. Indeed, adults had the highest elasticity and reproductive value in the matrix model. Increasing survival by as little as 20% corresponded to the turning point at which the population ceased to decline and increased abundance (28% survival of egg/larvae). The importance of the transition from subadult to adult (transitional matrix element) was identified as an additional factor in maintaining abundance based on the relatively long period spent in this life-history stage (seven years for females). A population viability analysis was conducted to assess the likelihood and projected time frame of extinction for this population under no management (∼25 years to complete extirpation; probability of extinction=1) and if management efforts such as captive rearing and headstarting are undertaken (probability of extinction <0.2 at 25–30% survival of egg/larvae). Adult females had the greatest effect in reducing growth rate and population abundance when removed in exploitation simulations (91.3% versus 51.8% reduction in population growth rate), indicating translocation efforts should be designed to maintain females in the breeding pool. These models indicated that conservation management strategies aimed at ensuring the presence of adult females while concomitantly ameliorating survival at early life stages (population augmentation, translocations, introduction of artificial nest structures) are needed to stabilise the Indiana population of eastern hellbenders. This stage-structured model is the first to model eastern hellbenders and has broad implications for use across the geographic range where populations of eastern hellbenders are monitored and vital rates can be estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.