Abstract

Since about 2000 (Bowyer et al., 1998), radioxenon monitoring systems have been under development and testing for the verification of the Comprehensive Nuclear Test-Ban Treaty (CTBT). Operation of the systems since then has resulted in development of a next-generation of systems that are nearly ready for operational deployment. By 2010, the need to screen out civilian sources was well known (Auer et al., 2010; Saey, 2009), and isotopic ratio approaches were soon considered (Kalinowski and Pistner, 2006) to identify specific sources. New generation systems are expected to improve the ability to verify the absence of nuclear tests by using isotopic ratios when multiple isotopes are detected. In this work, thousands of releases were simulated to compute the global detection probability of 131mXe, 133mXe, 133Xe, and 135Xe at 39 noble gas systems in the International Monitoring System (IMS) for both current and next-generation systems. Three release scenarios are defined at 1 h, 1 d, and 10 d past a 1 kt TNT equivalent 235U explosion event. Multiple cases using from one part in a million to the complete release of the xenon isotopic activity are evaluated for each scenario.Coverage maps and global integrals comparing current and next-generation monitoring systems are presented showing that next-generation noble gas systems will create measurable improvements in the IMS. The global detection probability for 133Xe is shown to be strong in all scenarios, but only modestly improved by next-generation equipment. However, the detection probability for 131mXe and 133mXe increased to about 50% in different scenarios, providing a second detectable isotope for many events. As anticipated from shorter sampling intervals, the expected number of detecting samples roughly doubled and the expected number of detecting stations rose by approximately 50% for all release scenarios. Thus, it might be anticipated that future events would consist of multiple 133Xe detections and one or more second isotope detections. Signals of this nature should increase detection confidence, tighten release location estimates, improve rejection of civilian signals, and lessen the impacts from individual systems being offline for maintenance or repair reasons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.