Abstract

Changes in the East Asian summer monsoon (EASM) during the mid-21st century relative to present day are simulated in two related models GOML1 and GOML2. Both models are the atmospheric components of two state-of-the-art climate models coupled to a multi-level mixed-layer ocean model, following the RCP 4.5 scenario. Both show that the EASM is enhanced due to the amplified land-sea thermal contrast. Summer precipitation over northern China is projected to increase by 5%–10% in both models mainly driven by enhancement of the monsoon circulation. Over south-eastern China the two models project different signs of precipitation change: a decrease in GOML1 with the maximum of about −1.0 mm d−1 and an increase in GOML2 with a maximum of around 1.0 mm d−1. Though the thermal effect of climate warming leads to a projected increase in precipitation over south-eastern China in both models, circulation changes are opposite and dominate the precipitation response. This indicates that uncertainty in changes in projected precipitation largely arises from uncertainly in projected circulation changes. The different circulation changes in the two models are likely related to differences in projected Sea Surface Temperature (SST) in the Western tropical Pacific and North Pacific. In GOML1, the SST warming in the tropical Pacific is associated with an anomalous local Hadley circulation, characterized by anomalous ascent in the tropics and southern subtropics, and anomalous descent with less precipitation over south-eastern China. In GOML2, the large decrease in the meridional SST gradient between the South China Sea and Western North Pacific is associated with an anomalous local Hadley circulation with anomalous ascent at 20°N–30°N and anomalous descent at 5°N–15°N, leading to an anti-cyclonic circulation anomaly over the South China Sea and increased precipitation over south-eastern China.

Highlights

  • Projected near term changes in the East Asian summer monsoon and its uncertainty To cite this article before publication: Fangxing Tian et al 2019 Environ

  • Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted

  • Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

Read more

Summary

Edinburgh Research Explorer

Projected near term changes in the East Asian summer monsoon and its uncertainty Citation for published version: Tian, F, Dong, B, Robson, JI, Sutton, R & Tett, S 2019, 'Projected near term changes in the East Asian summer monsoon and its uncertainty', Environmental Research Letters. https://doi.org/10.1088/17489326/ab28a6

General rights
Take down policy
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.