Abstract
We propose a novel specification of the Dynamic Conditional Correlation (DCC) model based on an alternative normalization of the pseudo-correlation matrix called Projected DCC (Pro-DCC). Our modification consists in projecting, rather than re-scaling, the pseudo-correlation matrix onto the set of correlation matrices in order to obtain a well defined conditional correlation matrix. A simulation study shows that projecting performs better than re-scaling when the dimensionality of the correlation matrix is large. An empirical application to the constituents of the S&P 100 shows that the proposed methodology performs favorably to the standard DCC in an out-of-sample asset allocation exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.