Abstract

The charismatic migratory populations of monarch butterflies have declined precipitously in North America. A contributing threat might be the expansion of winter breeding populations in the southern portions of their historical eastern and western summer breeding ranges. Recent research suggests individuals from winter breeding populations are prone to high parasite burdens, resulting in lower fitness compared to migratory counterparts. Temporal and spatial overlap between these individuals and migratory monarchs in both fall and spring mean that interbreeding and use of the same host plants could result in transfer of parasites, especially the debilitating neogregarine Ophryocystis elektroscirrha, increasing the parasite load in migrating populations. We aimed to predict how climate change could affect the distribution of winter breeding monarchs in North America. We used ecological niche modeling of monarch larval observations for winter and current climate data to predict the current and future distributions of winter breeding monarchs across North America. Our analyses predict up to a 38% and 160% increase and a 574 and 340 km northward shift in suitable area for winter breeding monarchs in response to climate change by 2100 for eastern and western migratory populations, respectively. Our results support concerns over potential risk of disease spread from resident monarchs to the migratory monarch populations. In both eastern and western migratory populations this is due to an increase in overlap between the resident population and the areas through which the migratory populations travel during fall and spring migrations. Our results support calls for controlling the spread of non-native tropical milkweed, as winter breeding monarchs depend on this plant for reproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.