Abstract

This study investigates the potential impacts of climate change on wind power over West Africa under various global warming levels. For the study, we analysed eleven multi-model multi-ensemble simulation datasets from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. The model simulations for the present-day climate were compared with available station observation data and two examples of reanalysis data (ERA-INTERIM and ERA-20C). The results show that model ensemble mean gives a realistic simulation of wind speed and wind power density (WPD) over West Africa, although it overestimates them. In agreement with the reanalysis, the models indicate that the strongest winds and largest WPD are in the Sahel zone, especially around Dakar. However, while the regional climate models (RCMs) show thirteen cities are viable for potential wind power generation in the historical climate, the reanalysis indicates only four Sahelian cities are suitable for it. The RCMs project an increase in monsoon wind speed and WPD over West African cities and the magnitude of the increase grows with the global warming levels. Nevertheless, the increase is not sufficient to make the cities in the Guinean and Savannah zones viable for wind power generation in the warmer climate. The results of the study may guide policymakers on harnessing wind power potential to meet the electricity demands of West Africa in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.