Abstract

AbstractThe snowpack is a critical component of the hydrologic cycle in cold regions, the change in which becomes important for proper planning and management of water. The Tibetan Plateau provides significant amount of water to most Asian rivers, and consequently the downstream population is dependent on its availability. Despite its importance, potential change in snowpack in this region due to climate change is poorly understood to date, largely because of remoteness and the orographic complexity of the area. This study inspects the impact of climate change on snowpack change over the Tibetan Plateau considering historical simulations (1981–2004), near future projections (2041–2064), and far future projections (2071–2094) from global climate models (GCMs) and regional climate models (RCMs) of derived temperature, precipitation, and snow water equivalent (SWE). A multivariate nesting bias correction approach (MRNBC) was employed to correct possible biases in GCM and RCM derived temperature, precipitation, and SWE jointly over multiple time scales to preserve interdependencies among the variables while enabling simulation of year‐to‐year persistence, which is of importance in water security assessments. MRNBC reduced the bias in model simulations significantly and improved projections of the snow climatology. The results indicate that the annual maximum spell of snow‐free days will increase over the region whereas the snowy day fraction will decrease in the future compared to the historical period. In addition, annual SWE are noted to be decreasing in both the near future and far future with respect to historical averages. Changes in SWE will result from warming temperatures and also from changes in precipitation, which will lead to more rainfall than snowfall thus affecting snowmelt processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call