Abstract

The regional climate model version 4 (RegCM4) is analyzed in this study to assess Indian summer monsoon precipitation (ISMP) over six homogeneous precipitation regions and various meteorological subdivisions of India embedded therein during a reference period (1976–2005) and mid- (2031–2060) and far-future (2070–2099) periods under the RCP8.5 scenario over the South Asia CORDEX domain. A Coupled Model Intercomparison Project (CIMIP5) global model GFDL-ESM2M provides initial and boundary conditions to the RegCM4 under the high-emission scenario RCP8.5. RegCM4 precipitation fields are validated against observed India Meteorological Department (IMD) and Asian Precipitation-Highly Resolved Observational Data Integration Toward Evaluation (APHRODITE) precipitation datasets, while wind and specific humidity fields obtained from RegCM4 are validated against National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the parent GFDL model integrated fields. Model comparisons indicate that RegCM4 captures the regional characteristics of ISMP satisfactorily in terms of biases, trends, interannual variability, and circulation patterns. RegCM4 precipitation fields show high correlations of 0.9 and 0.8 with those of IMD and APHRODITE, respectively, and RegCM shows better skill in comparison with GFDL over about 68% of meteorological subdivisions. RegCM4 projects increases in precipitation by about 15.3% (28.4%), 5.1% (16.2%), and 5.4% (18.4%) respectively over the Northwest (NW), Northeast (NE) and Hilly Regions (HR) in the mid-(far-)future but decreases in precipitation over the Peninsular (PE) region by about −1.5% (−15.7%) during the same period. A similar precipitation change pattern is also found when analyzing the probability distribution functions (PDFs) over the same regions. The precipitation intensity (95th percentile) shows increases above 40% over numerous subdivisions of the West Central (WC), NW, and HR regions. The present analysis also reveals significant increases of more than 50% in mean precipitation over several meteorological subdivisions. Analysis of the circulation fields depicts a northward shift of the high-precipitation belt while high-pressure systems dominate the peninsular region when approaching the central India global warming scenario. It is interesting to note that the extreme precipitation index Rx5day exactly follows the pattern of projected increase in mean precipitation. In addition, it is noted that the projected variability and change in the mean precipitation are less frequent than for RX5day, while a consistently stronger spread in variability is projected in the mid- to far-future under the warming scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.