Abstract

The complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC) method is routinely used to investigate metastable electronic states in small molecules. However, the requirement of evaluating eigenvalue trajectories presents a barrier to larger simulations, as each point corresponding to a different value of the CAP strength parameter requires a unique eigenvalue calculation. Here, we present a new implementation of CAP-EOM-CCSD that uses a subspace projection scheme to evaluate resonance positions and widths at the overall cost of a single electronic structure calculation. We analyze the performance of the projected CAP-EOM-CC scheme against the conventional scheme, where the CAP is incorporated starting from the Hartree-Fock level, for various small and medium sized molecules, and investigate its sensitivity to various parameters. Finally, we report resonance parameters for a set of molecules commonly used for benchmarking CAP-based methods, and we report estimates of resonance energies and widths for 1- and 2-cyanonaphtalene, molecules that were recently detected in the interstellar medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call