Abstract

Abstract We characterize the non-sphericity of galaxy clusters by the projected axis ratio of spatial distribution of star, dark matter, and X-ray surface brightness (XSB). We select 40 simulated groups and clusters of galaxies with mass larger than 5 × 1013 M⊙ from the Horizon simulation that fully incorporates the relevant baryon physics, in particular, the active galactic nucleus feedback. We find that the baryonic physics around the central region of galaxy clusters significantly affects the non-sphericity of dark matter distribution even beyond the central region, approximately up to half of the virial radius. Therefore it is very difficult to predict the probability density function (PDF) of the projected axis ratio of XSB from dark-matter-only N-body simulations as attempted in previous studies. Indeed, we find that the PDF derived from our simulated clusters exhibits much better agreement with that from the observed X-ray clusters. This indicates that our present methodology to estimate the non-sphericity directly from the Horizon simulation is useful and promising. Further improvements in both numerical modeling and observational data will establish the non-sphericity of clusters as a cosmological test complementary to more conventional statistics based on spherically averaged quantities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call