Abstract

The beta distribution has traditionally been employed in the PERT methodology and generally used for modeling bounded continuous random variables based on expert’s judgment. The impossibility of estimating four parameters from the three values provided by the expert when the beta distribution is assumed to be the underlying distribution has been widely debated. This paper presents the generalized bicubic distribution as a good alternative to the beta distribution since, when the variance depends on the mode, the generalized bicubic distribution approximates the kurtosis of the Gaussian distribution better than the beta distribution. In addition, this distribution presents good properties in the PERT methodology in relation to moderation and conservatism criteria. Two empirical applications are presented to demonstrate the adequateness of this new distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.