Abstract

AbstractProject AURORA aims at the development of unmanned robotic airships capable of autonomous flight over user‐defined locations for aerial inspection and environmental monitoring missions. In this article, the authors report a successful control and navigation scheme for a robotic airship flight path following. First, the AURORA airship, software environment, onboard system, and ground station infrastructures are described. Then, two main approaches for the automatic control and navigation system of the airship are presented. The first one shows the design of dedicated controllers based on the linearized dynamics of the vehicle. Following this methodology, experimental results for the airship flight path following through a set of predefined points in latitude/longitude, along with automatic altitude control are presented. A second approach considers the design of a single global nonlinear control scheme, covering all of the aerodynamic operational range in a sole formulation. Nonlinear control solutions under investigation for the AURORA airship are briefly described, along with some preliminary simulation results. © 2006 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call