Abstract

Peptide immunotherapy (PIT) is a targeted therapeutic approach, involving administration of disease-associated peptides, with the aim of restoring antigen-specific immunological tolerance without generalized immunosuppression. In type 1 diabetes, proinsulin is a primary antigen targeted by the autoimmune response, and is therefore a strong candidate for exploitation via PIT in this setting. To elucidate the optimal conditions for proinsulin-based PIT and explore mechanisms of action, we developed a preclinical model of proinsulin autoimmunity in a humanized HLA-DRB1*0401 transgenic HLA-DR4 Tg mouse. Once proinsulin-specific tolerance is broken, HLA-DR4 Tg mice develop autoinflammatory responses, including proinsulin-specific T cell proliferation, interferon (IFN)-γ and autoantibody production. These are preventable and quenchable by pre- and post-induction treatment, respectively, using intradermal proinsulin-PIT injections. Intradermal proinsulin-PIT enhances proliferation of regulatory [forkhead box protein 3 (FoxP3(+))CD25(high) ] CD4 T cells, including those capable of proinsulin-specific regulation, suggesting this as its main mode of action. In contrast, peptide delivered intradermally on the surface of vitamin D3-modulated (tolerogenic) dendritic cells, controls autoimmunity in association with proinsulin-specific IL-10 production, but no change in regulatory CD4 T cells. These studies define a humanized, translational model for in vivo optimization of PIT to control autoimmunity in type 1 diabetes and indicate that dominant mechanisms of action differ according to mode of peptide delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.