Abstract

Recent evidence has shown that retinal inflammation is a key player in diabetic retinopathy (DR) pathogenesis. To further understand and validate the metabolic biomarkers of DR, we investigated the effect of intravitreal proinflammatory cytokines on the retinal structure, function, and metabolism in an in vivo hyperglycemic mouse model. C57Bl/6 mice were rendered hyperglycemic within one week of administration of a single high-dose intraperitoneal injection of streptozotocin, while control mice received vehicle injection. After confirming hyperglycemia, the mice received an intravitreal injection of either proinflammatory cytokines (TNF-α and IL-1β) or vehicle. Similarly, control mice received an intravitreal injection of either proinflammatory cytokines or vehicle. The retinal structure was evaluated using fundus imaging and optical coherence tomography, and retinal function was assessed using a focal electroretinogram (ERG), two days after cytokine injection. Retinas were collected for biochemical analysis to determine key metabolite levels and enzymatic activities. Hyperglycemic mice intraocularly injected with cytokines developed visible retinal vascular damage and intravitreal and intraretinal hyper-reflective spots two days after the cytokines injection. These mice also developed a significant functional deficit with reduced a-wave and b-wave amplitudes of the ERG at high light intensities compared to control mice. Furthermore, metabolic disruption was evident in these mice, with significantly higher retinal glucose, lactate, ATP, and glutamine levels and a significant reduction in glutamate levels compared with control mice. Minimal or no metabolic changes were observed in hyperglycemic mice without intraocular cytokines or in control mice with intraocular cytokines at 2 days post hyperglycemia. Proinflammatory cytokines accelerated the development of vascular damage in the eyes of hyperglycemic mice. Significant changes were observed in retinal structure, function, and metabolic homeostasis. These findings support the idea that with the onset of inflammation in DR, there is a deficit in metabolism. Therefore, early intervention to prevent inflammation-induced retinal changes in diabetic patients may improve the disease outcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call