Abstract
Exposure of rodents to immunosuppressive agents such as ozone, dioxin, or ultraviolet radiation (UVR) leads to increased morbidity and mortality following influenza virus infection. However, these adverse effects are not related to the suppression of virus-specific immune responses. Our laboratory showed that UVR increased the morbidity, mortality, and pathogenesis of influenza virus without affecting protective immunity to the virus, as measured by resistance to reinfection, suggesting that UVR and other immunosuppressive pollutants such as dioxin and ozone may exacerbate early responses that contribute to the pathogenesis of a primary viral infection. In the present study, we examined the mechanism of UVR-enhanced mortality in the absence of effects on virus-specific immunity and tested the hypothesis that modulation of cytokine levels was associated with increased deaths and body weight loss. BALB/c mice were exposed to 8.2 kJ/m(2) UVR and were infected 3 days later with a sublethal influenza virus infection (LD(40) of mouse-adapted Hong Kong influenza A/68, H(3)N(2)). Influx of inflammatory cells, proinflammatory cytokines, and cytokines produced by T-helper lymphocytes (Th1 and Th2) were measured in lung homogenates (LH) as well as in bronchoalveolar lavage fluid (BAL). UVR preexposure decreased the influenza-induced lymphocytic influx 5 days after infection, but did not alter macrophage and neutrophil influx into the lung, or increase virus titers significantly. Although interferon (IFN)-gamma, total interleukin (IL)-12, IL-6, and TNF-alpha were altered in mice that received UVR exposure prior to infection, no clear association was made that correlated with the UVR-induced increase in body weight loss and mortality due to influenza infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Toxicological sciences : an official journal of the Society of Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.