Abstract

Epidemiological studies demonstrated that the exposure of different air pollutants including particulate matter (PM) has been related to adverse effect on immune system. Current study was designed to investigate cytokines in blood plasma of adolescent persons continuously exposed to different degrees of ambient air pollutions. Tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), IL-12p40, and IL-10 were chosen as cytokines of proinflammatory and anti-inflammatory immune response. The peripheral venous blood was taken from adolescents living in the cities of Stara Zagora region, Southeast Bulgaria, that is, in Stara Zagora, Kazanlak, and Chirpan. The quantity of cytokines in plasma samples was determined by enzyme-linked immunosorbent assay. Results demonstrated that youths living in Stara Zagora showed significantly smaller quantity of TNF-α, compared with adolescents from Kazanlak and Chirpan. Moreover, adolescents living in Stara Zagora showed significantly higher quantity of IL-10 than students from Kazanlak and Chirpan. Analysis of the data of air quality gives reason to assert that PM10 and PM2.5 have been the main atmospheric pollutants around the monitoring points. The complex air quality assessment based on these criteria determined that the highest air pollution was in the city of Stara Zagora, followed by Chirpan and the relatively unpolluted town was Kazanlak. We concluded that air pollutants, mostly PM2.5, can modulate cytokine production and can change the balance between proinflammatory TNF-α and anti-inflammatory IL-10 production. Increased levels of IL-10 combined with decreased level of TNF-α in adolescents living in Stara Zagora can serve as a biomarker for suppression of T helper 1 (Th1) cell-mediated immunity and exacerbation of Th2 humoral immune response and could be a prerequisite for the development of allergic and autoimmune diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.