Abstract
With the Integrated Circuits becoming pervasive in all key industries and applications, PUF’s has gained immense popularity for securing the IC’s by providing unique identification code to each chip. Designing a highly efficient PUF with optimal values of uniqueness and reliability is a significant challenge. Uniqueness depends on process variations during chip fabrication, and reliability depends on the chip’s ability to resist changes to supply voltage and temperature variations. Multiple PUF designs that employ reliability enhancement circuits and security algorithms achieve these design characteristics. Nonetheless, these techniques are design overheads. This paper presents a novel Physical Unclonable Function (PUF) based on the ProHys switch. It deals with hysteresis and proteresis mode of operation, which are complementary to each other. The Prohys PUF befittingly satisfies both uniqueness and reliability criteria, without any additional circuitry or security algorithms. It is the first attempt to design a PUF based on the ProHys switch to the best of our knowledge. The proposed ProHys PUF is designed in TSMC 180 nm CMOS technology, generating an inter-chip variation of 49.85% with 99.7% uniqueness. The minimum reliability of the circuit is 96.9% for a temperature range of -40 °C to 100 °C at a supply voltage range of 1.7V–1.9V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.