Abstract
Breast cancer, ranking as the second leading cause of female cancer-related deaths in the U.S., demands the exploration of innovative treatments. Repurposing FDA-approved drugs emerges as an expedited and cost-effective strategy. Our study centered on proguanil, an antimalarial drug, reveals notable anti-proliferative effects on diverse breast cancer cell lines, including those derived from patients. Proguanil-induced apoptosis was associated with a substantial increase in reactive oxygen species (ROS) production, leading to reduced mitochondrial membrane potential, respiration, and ATP production. Proguanil treatment upregulated apoptotic markers (Bax, p-H2AX, cleaved-caspase 3, 9, cleaved PARP) and downregulated anti-apoptotic proteins (bcl-2, survivin) in breast cancer cell lines. In female Balb/c mice implanted with 4T1 breast tumors, daily oral administration of 20 mg/kg proguanil suppressed tumor enlargement by 55%. Western blot analyses of proguanil-treated tumors supported the in vitro findings, demonstrating increased levels of p-H2AX, Bax, c-PARP, and c-caspase3 as compared to controls. Our results collectively highlight proguanil's anticancer efficacy in vitro and in vivo in breast cancer, prompting further consideration for clinical investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.