Abstract

Floor systems constructed from slabs and beams are critical structural elements of reinforced concrete (RC) frame structures, allowing them to resist progressive collapse. To elucidate the complex effects of the slab and its thickness on the progressive-collapse resistance of RC spatial frame structures, three 1/3-scale 2 × 2 span substructure specimens, including one three-dimensional (3D) skeletal frame substructure and two 3D frame–slab substructures with different slab thicknesses, were tested in a middle-column-removal scenario. The test results indicated that the frame–slab substructure exhibited two resisting progressive-collapse stages: a primary mechanism stage, with small deformations, and a secondary mechanism stage, with large deformations. The slab contributions were separated from the floor system and quantified by comparing the results for the skeletal frame substructure and frame–slab substructure. Although there were no in-plane confinements, the slab also significantly improved the resistance against progressive collapse, owing to the compressive and tensile membrane action in the primary and secondary mechanism stages, respectively. Increasing the slab thickness increased the compressive membrane action of the slab, which significantly enhanced the progressive-collapse resistance under small deformations. However, under large deformations, the beam and slab did not work synergistically, which limited the development of secondary mechanisms against progressive collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.