Abstract

This paper presents a detailed analysis of tool failure progression through an experimental study of high speed milling of Ti-6Al-4V alloy with CVD (Ti(C, N)-Al2O3)-coated carbide tools. The progressive tool failure characteristics under a variety of different cutting conditions were investigated. Cutting forces components and transient infrared temperature during the machining processes have been measured along with corresponding progressive tool wear when milling using coated carbide inserts under dry machining conditions. Optical microscope and scanning electron microscopic analysis results clearly show the different dominant wear regions at different stages of machining with coated carbide tools. The experimental results demonstrate that the cutting forces and the cutting temperature produced during the machining process showed an increasing trend with the tool failure progression, which in turns accelerated the tool wear progression and caused the change of the tool failure mechanisms. Furthermore, the progressive tool failure mechanisms were analyzed qualitatively. The cutting speed was correlated with progressive tool failure mechanisms, and the different conditions of friction and normal stresses caused by different cutting force and cutting temperature under different cutting speeds resulted in the varieties of progressive tool failure mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call