Abstract

Current engineering practice pays little attention, if any, to nonlinear abutment-backfill soil interaction (ABSI) effects on seismic behaviour of bridges. The primary focus of this article is to assess the influence of ABSI on the progressive seismic failure of bridge structures. Emphasis is placed on the significance of ABSI effects, including abutment behaviour and backfill soil flexibility. Nonlinear dynamic analysis is performed using a bilinear hysteretic model for the bridge superstructure and nonlinear characteristics of the expansion joint. Results indicate that ABSI has a significant effect on the seismic response in the longitudinal direction and can effectively reduce bridge seismic demands. ABSI affects rotational ductility demand at pier ends of the bridges, relative displacements, pounding and axial forces in the restrainers. Thus, it is essential that numerical models used in seismic assessment of bridge structures properly consider abutment-backfill interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.