Abstract

Transsynaptic anterograde and retrograde degeneration of neurons and neural fibers are assumed to trigger local excitotoxicity and inflammatory processes. These processes in turn are thought to drive exo-focal neurodegeneration in remote areas connected to the infarcted tissue after ischemic stroke. In the case of middle cerebral artery occlusion (MCAO), in which striato-nigral connections are affected, the hypothesis of inflammation-induced remote neurodegeneration is based on the temporal dynamics of an early appearance of inflammatory markers in midbrain followed by dopaminergic neuronal loss. To test the hypothesis of a direct transsynaptic mediation of secondary exo-focal post-ischemic neurodegeneration, we used a photochemical induction of a stroke (PTS) in Sprague-Dawley rats restricted to motor cortex (MC), thereby sparing the striatal connections to dopaminergic midbrain nuclei. To dissect the temporal dynamics of post-ischemic neurodegeneration, we analyzed brain sections harvested at day 7 and 14 post stroke. Here, an unexpectedly pronounced and widespread loss of dopaminergic neurons occurred 14 days after stroke also affecting dopaminergic nuclei that are not directly coupled to MC. Since the pattern of neurodegeneration in case of a pure motor stroke is similar to a major stroke including the striatum, it is unlikely that direct synaptic coupling is a prerequisite for delayed secondary exo-focal post ischemic neurodegeneration. Furthermore, dopaminergic neurodegeneration was already detected by Fluoro-Jade C staining at day 7, coinciding with a solely slight inflammatory response. Thus, inflammation cannot be assumed to be the primary driver of exo-focal post-ischemic cell death. Moreover, nigral substance P (SP) expression indicated intact striato-nigral innervation after PTS, whereas opposing effects on SP expression after striatal infarcts argue against a critical role of SP in neurodegenerative or inflammatory processes during exo-focal neurodegeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call