Abstract

Apo2 ligand (Apo2L, also known as TRAIL) is a member of the tumour necrosis factor (TNF) family of cytokines that selectively induces the death of cancer cells, but not of normal cells. We observed that recombinant Apo2L/TRAIL was proapoptotic in early-passage BTK-143 osteogenic sarcoma cells, inducing 80% cell death during a 24 h treatment period. Apo2L/TRAIL-induced apoptosis was blocked by caspase inhibition. With increasing passage in culture, BTK-143 cells became progressively resistant to the apoptotic effects of Apo2L/TRAIL. RNA and flow cytometric analysis demonstrated that resistance to Apo2L/TRAIL was paralleled by progressive acquisition of the decoy receptor, DcR2. Blocking of DcR2 function with a specific anti-DcR2 antibody restored sensitivity to Apo2L/TRAIL in a dose-dependent manner. Importantly, treatment of resistant cells with the chemotherapeutic agents doxorubicin, cisplatin and etoposide reversed the resistance to Apo2L/TRAIL, which was associated with drug-induced upregulation of mRNA encoding the death receptors DR4 and DR5. BTK-143 cells thus represent a useful model system to investigate both the mechanisms of acquisition of resistance of tumour cells to Apo2L/TRAIL and the use of conventional drugs and novel agents to overcome resistance to Apo2L/TRAIL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.